让我们一起来玩扫雷游戏!
给你一个大小为m x n
二维字符矩阵board
,表示扫雷游戏的盘面,其中:
'M'
代表一个 未挖出的 地雷, 'E'
代表一个 未挖出的 空方块, 'B'
代表没有相邻(上,下,左,右,和所有4
个对角线)地雷的 已挖出的 空白方块, 数字('1'
到'8'
)表示有多少地雷与这块 已挖出的 方块相邻, 'X'
则表示一个 已挖出的 地雷。 给你一个整数数组click
,其中click = [clickr, clickc]
表示在所有未挖出的方块('M'
或者'E'
)中的下一个点击位置(clickr
是行下标,clickc
是列下标)。
根据以下规则,返回相应位置被点击后对应的盘面:
如果一个地雷('M'
)被挖出,游戏就结束了- 把它改为'X'
。 如果一个 没有相邻地雷 的空方块('E'
)被挖出,修改它为('B'
),并且所有和其相邻的 未挖出 方块都应该被递归地揭露。 如果一个 至少与一个地雷相邻 的空方块('E')被挖出,修改它为数字('1'
到'8'
),表示相邻地雷的数量。 如果在此次点击中,若无更多方块可被揭露,则返回盘面。
示例 1:
输入:board = [["E","E","E","E","E"],["E","E","M","E","E"],["E","E","E","E","E"],["E","E","E","E","E"]], click = [3,0] 输出:[["B","1","E","1","B"],["B","1","M","1","B"],["B","1","1","1","B"],["B","B","B","B","B"]]
|
示例 2:
输入:board = [["B","1","E","1","B"],["B","1","M","1","B"],["B","1","1","1","B"],["B","B","B","B","B"]], click = [1,2] 输出:[["B","1","E","1","B"],["B","1","X","1","B"],["B","1","1","1","B"],["B","B","B","B","B"]]
|
提示:
m == board.length n == board[i].length 1 <= m, n <= 50 board[i][j] 为 'M'、'E'、'B' 或数字 '1' 到 '8' 中的一个 click.length == 2 0 <= clickr < m 0 <= clickc < n board[clickr][clickc] 为 'M' 或 'E'
|
来源:力扣(LeetCode) 链接:https://leetcode-cn.com/problems/minesweeper 著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
思路
本题同样是dfs
,每次搜索是只需判断当前节点的周围是否有雷,如果有则填上数字然后返回,如果没有则继续搜索相邻的网格。
class Solution {
int[][] directions = { {-1, 0}, {1, 0}, {0, 1}, {0, -1}, {1, 1}, {1, -1}, {-1, -1}, {-1, 1} };
char[][] board = null;
int m = 0, n = 0;
public char[][] updateBoard(char[][] board, int[] click) { this.board = board; this.m = board.length; this.n = board[0].length; int x = click[0], y = click[1]; if (board[x][y] == 'M') { board[x][y] = 'X'; return board; } dfs(x, y); return board; }
void dfs(int x, int y) { if (board[x][y] == 'M' || board[x][y] == 'B') return; int mines = countMine(x, y); if (mines != 0) board[x][y] = (char)('0' + mines); else { board[x][y] = 'B'; for (int d = 0; d < 8; d++) { int newX = x + directions[d][0]; int newY = y + directions[d][1]; if (0 <= newX && newX < m && 0 <= newY && newY < n) dfs(newX, newY); } } }
int countMine(int x, int y) { int count = 0; for (int d = 0; d < 8; d++) { int newX = x + directions[d][0]; int newY = y + directions[d][1]; if (0 <= newX && newX < m && 0 <= newY && newY < n && board[newX][newY] == 'M') count++; } return count; }
}
|
复杂度
时空复杂度应当是。